已知函数f(x)=
,g(x)=-ax+1.
(1)曲线f(x)在x=1处的切线与直线3x-y=1平行,求a的值.
(2)求f(x)的单调区间.
(3)若a>0,在区间(1,
]至少存在一个实数x
,使f(x
)>g(x
)成立,试求实数a的取值范围.
考点分析:
相关试题推荐
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为
、
、
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.
查看答案
如图,在正三棱锥P-ABC中,点O为底面中心,点E在PA上,且AE=2EP
(1)求证:OE∥平面PBC
(2)若OE⊥PA,求二面角P-AB-C的大小
(3)在(2)的条件下,若AB=3,求三棱锥P-ABC的体积.
查看答案
为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列{a
n}的前四项,后6组的频数从左到右依次是等差数列{b
n}的前六项.
(Ⅰ)求等比数列{a
n}的通项公式;
(Ⅱ)求等差数列{b
n}的通项公式;
(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率μ的大小.
查看答案
在下列命题中:
(1)α=2kπ
(k∈Z)是tanα=
的充分不必要条件
(2)函数y=sinxcosx的最小正周期是2π
(3)在△ABC中,若cosAcosB>sinAsinB,则△ABC为钝角三角形
(4)函数y=2sin(2x+
)+1图象的对称中心为(
-
,1)(k∈R)
(5)女大学生的身高预报体重的回归方程y′=0.849x-85.712,对于身高为172cm的女大学生可以得到其精确体重为60.316(kg).
其中正确的命题为
(请将正确命题的序号都填上)
查看答案
如果tan(α+β)=
,tan(
)=
,那么tan(
)的值是
.
查看答案