满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为A...

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2.
(1)求证:AB1∥平面BC1D;
(2)若四棱锥B-AA1C1D的体积为3,求二面角C-BC1-D的正切值.

manfen5.com 满分网
(1)在平面BC1D内找到一条直线与已知直线AB1平行,根据线面平行的判定定理证明线面平行,而找平行的方法一般是找三角形的中位线或找平行四边形. (2)根据题中的垂直关系表达出四棱锥的体积进而得到等式求出BC的数值,结合这题中的线面垂直关系作出二面角,再证明此角就是所求角然后求出即可. 【解析】 (1)证明:连接B1C,设B1C与BC1相交于点O,连接OD, ∵四边形BCC1B1是平行四边形, ∴点O为B1C的中点. ∵D为AC的中点, ∴OD为△AB1C的中位线, ∴OD∥AB1. ∵OD⊂平面BC1D,AB1⊄平面BC1D, ∴AB1∥平面BC1D. (2)【解析】 依题意知,AB=BB1=2, ∵AA1⊥平面ABC,AA1⊂平面AA1C1C, ∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC. 作BE⊥AC,垂足为E,则BE⊥平面AA1C1C, 设BC=a, 在Rt△ABC中,,, ∴四棱锥B-AA1C1D的体积==a. 依题意得,a=3,即BC=3. ∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC⊂平面BB1C1C,BB1⊂平面BB1C1C, ∴AB⊥平面BB1C1C. 取BC的中点F,连接DF,则DF∥AB,且. ∴DF⊥平面BB1C1C. 作FG⊥BC1,垂足为G,连接DG, 由于DF⊥BC1,且DF∩FG=F, ∴BC1⊥平面DFG. ∵DG⊂平面DFG, ∴BC1⊥DG. ∴∠DGF为二面角C-BC1-D的平面角. 由Rt△BGF~Rt△BCC1,得, 得, 在Rt△DFG中,=. ∴二面角C-BC1-D的正切值为.
复制答案
考点分析:
相关试题推荐
某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.
等级一等品二等品三等品次品
 P 0.6  a0.1 b
表1   
等级一等品二等品三等品次品
利润  654-1
表2
(1)求a,b的值;
(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
查看答案
已知函数f(x)=2sinxcosx+cos2x(x∈R).
(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;
(2)若θ为锐角,且manfen5.com 满分网,求tanθ的值.
查看答案
在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=    查看答案
 如图,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为   
manfen5.com 满分网 查看答案
某所学校计划招聘男教师x名,女教师y名,x和y须满足约束条件manfen5.com 满分网则该校招聘的教师最多是    名. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.