满分5 > 高中数学试题 >

如图,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM⊥BB1交AA1...

如图,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.
(1)求证:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.

manfen5.com 满分网
(1)由题意和三棱柱的性质,证出 CC1⊥平面PMN,再证 CC1⊥MN. (2)利用类比推理边“对应侧面面积”得出结论,证明用到余弦定理平行四边形的面积公式和题中的垂直关系. (1)证:由题意知,CC1∥BB1,PM⊥BB1,PN⊥BB1, ∴CC1⊥PM,CC1⊥PN,且PM∩PN=P, ∴CC1⊥平面PMN,MN⊂平面PMN, ∴CC1⊥MN; (2)【解析】 在斜三棱柱ABC-A1B1C1中,有, 其中α为平面CC1B1B与平面CC1A1A所组成的二面角. ∵CC1⊥平面PMN,∴上述的二面角为∠MNP, 在△PMN中,PM2=PN2+MN2-2PN•MNcos∠MNP ∴PM2•Cc12=PN2•Cc12+MN2•Cc12-2(PN•Cc1)•(MN•Cc1)cos∠MNP, ∵=PN•CC1,=MN•CC1,=PM•BB1, ∴ 其中α为平面CC1B1B与平面CC1A1A所组成的二面角.
复制答案
考点分析:
相关试题推荐
已知f(x)=manfen5.com 满分网(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=manfen5.com 满分网的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案
设函数f(x)定义在R上,f(0)≠0,且对于任意a,b∈R,都有f(a+b)+f(a-b)=2f(a)f(b).
(1)求证:f(x)为偶函数;
(2)若存在正数m使f(m)=0,求证:f(x)为周期函数.
查看答案
已知数列{an},a1=1,an=3n-1an-1(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,数列{bn}的前n项和为Sn,求数列{bn}的通项公式;
(3)求数列{|bn|}的前n项和Tn
查看答案
已知函数f(x)=x3+x.
(1)指出f(x)在定义域R上的奇偶性与单调性(只要求写出结论,无须证明);
(2)已知实数a,b,c满足a+b>0,b+c>0,c+a>0,试判断f(a)+f(b)+f(c)与0的大小,并加以证明.
查看答案
设顶点在原点,焦点在x轴上的抛物线过点P(2,4),过P作抛物线的动弦PA,PB,并设它们的斜率分别为kPA,kPB
(1)求抛物线的方程;
(2)若kPA+kPB=0,求证直线AB的斜率为定值,并求出其值;
(3)若kPA•kPB=1,求证直线AB恒过定点,并求出其坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.