满分5 > 高中数学试题 >

一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在...

一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
本题是一个古典概型,试验发生包含的事件是先后掷两次骰子,共有6×6种结果,满足条件的事件是(x,y)为坐标的点落在直线2x+y=8上,列举当x=1,y=6;x=2,y=4;x=3,y=2,共有3种结果,得到概率. 【解析】 由题意知本题是一个古典概型, ∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果, 满足条件的事件是(x,y)为坐标的点落在直线2x+y=8上, 当x=1,y=6;x=2,y=4;x=3,y=2,共有3种结果, ∴根据古典概型的概率公式得到P=, 故选B.
复制答案
考点分析:
相关试题推荐
设i为虚数单位,复数z1=1+i,z2=2i-1,则复数manfen5.com 满分网在复平面上对应的点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案
函数f(x)=x3-3tx+m(x∈R,m和t为常数)是奇函数.
(1)求实数m的值和函数f(x)的图象与横轴的交点坐标;
(2)设g(x)=|f(x)|(x∈[-1,1]),求g(x)的最大值F(t);
(3)求F(t)的最小值.
查看答案
设向量manfen5.com 满分网,点P(x,y)为动点,已知manfen5.com 满分网
(1)求点p的轨迹方程;
(2)设点p的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.
查看答案
已知数列{an}中a1=manfen5.com 满分网,an=2-manfen5.com 满分网(n≥2,n∈N*),数列 {bn},满足bn=manfen5.com 满分网(n∈N*),
(1)求证数列 {bn}是等差数列;
(2)若sn=(a1-1)•(a2-1)+(a2-1)•(a3-1)+…+(an-1)•(an+1-1)是否存在a与b∈Z,使得:a≤sn≤b恒成立.若有,求出a的最大值与b的最小值,如果没有,请说明理由.
查看答案
如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的侧面积与△ABE的面积之比等于4π. 
(Ⅰ)求证:AF⊥BD;
(Ⅱ)求二面角A-BD-E的正弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.