满分5 > 高中数学试题 >

设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<...

设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为   
由题意构造函数g(x)=xf (2x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(-2)=0得g(1)=0、还有g(0)=0,再通过奇偶性进行转化,利用单调性求出不等式的解集. 【解析】 设g(x)=xf(2x),则g'(x)=[xf(2x)]'=x'f(2x)+2xf'(2x)=2xf′(2x)+f(2x)<0, ∴函数g(x)在区间(-∞,0)上是减函数, ∵f(x)是定义在R上的奇函数, ∴g(x)=xf(2x)是R上的偶函数, ∴函数g(x)在区间(0,+∞)上是增函数, ∵f(-2)=0, ∴f(2)=0; 即g(1)=0且g(0)=0f(0)=0, ∴xf(2x)<0化为g(x)<0, ∵对于偶函数g(x),有g(-x)=g(x)=g(|x|), 故不等式为g(|x|)<g(1), ∵函数g(x)在区间(0,+∞)上是增函数, ∴|x|<1且x≠0,解得-1<x<1且x≠0, 故所求的解集为{x|-1<x<1且x≠0}. 故答案为:{x|-1<x<1且x≠0}.
复制答案
考点分析:
相关试题推荐
若直线manfen5.com 满分网与曲线C:x2-y2=2有两个不同交点,则实数t的取值范围是    查看答案
函数f(x)=|sinx•cosx-sin2x|的最小正周期是    查看答案
若幂函数f(x)的图象过点(-8,4),则该幂函数的解析式为    查看答案
manfen5.com 满分网如图,已知球O是棱长为1 的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
manfen5.com 满分网已知函数f(x)的定义域为[-1,5],部分对应值如下表.
x-145
f(x)1221
f(x)的导函数y=f'(x)的图象如图所示.
下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中真命题的个数是( )
A.4个
B.3个
C.2个
D.1个
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.