满分5 > 高中数学试题 >

已知抛物线C的顶点在原点,焦点为F(0,1). (Ⅰ)求抛物线C的方程; (Ⅱ)...

已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(Ⅰ)设抛物线C的方程是x2=ay,根据焦点为F的坐标求得a,进而可得抛物线的方程. (Ⅱ)设P(x1,y1),Q(x2,y2),进而可得抛物线C在点P处的切线方程和直线PQ的方程,代入抛物线方程根据韦达定理,可求得x1+x2和x1x2的表达式,根据×求得y1=4及点P的坐标. 【解析】 (Ⅰ)设抛物线C的方程是x2=ay, 则, 即a=4. 故所求抛物线C的方程为x2=4y. (Ⅱ)【解析】 设P(x1,y1),Q(x2,y2), 则抛物线C在点P处的切线方程是, 直线PQ的方程是. 将上式代入抛物线C的方程,得, 故x1+x2=,x1x2=-8-4y1, 所以x2=-x1,y2=+y1+4. 而=(x1,y1-1),=(x2,y2-1),×=x1x2+(y1-1)(y2-1) =x1x2+y1y2-(y1+y2)+1 =-4(2+y1)+y1(+y1+4)-(+2y1+4)+1 =y12-2y1--7 =(y12+2y1+1)-4(+y1+2) =(y1+1)2- ==0, 故y1=4,此时,点P的坐标是(±4,4). 经检验,符合题意. 所以,满足条件的点P存在,其坐标为P(±4,4).
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.
(1)确定y=f(x)在(0,+∞)上的单调性;
(2)设h(x)=x•f(x)-x-ax3在(0,2)上有极值,求a的取值范围.
查看答案
如图,在三棱柱△ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,BB1=2,∠BCC1=manfen5.com 满分网
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)试在棱CC1(不包含端点C,C1上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(Ⅲ)在(Ⅱ)的条件下,若AB=manfen5.com 满分网,求二面角A-EB1-A1的平面角的正切值.

manfen5.com 满分网 查看答案
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.
(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX.
查看答案
已知manfen5.com 满分网=(sinωx+cosωx,manfen5.com 满分网cosωx),manfen5.com 满分网=(cosωx-sinωx,2sibωx),且ω>0,设f(x)=manfen5.com 满分网,f(x)的图象相邻两对称轴之间的距离等于manfen5.com 满分网
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,b+c=4,f(A)=1,求△ABC面积的最大值.
查看答案
manfen5.com 满分网如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,则点A到直线l的距离AD为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.