满分5 > 高中数学试题 >

一个口袋中有2个白球和n个红球(n≥2,且n∈N*),每次从袋中摸出两个球(每次...

一个口袋中有2个白球和n个红球(n≥2,且n∈N*),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(1)试用含n的代数式表示一次摸球中奖的概率P;
(2)若n=3,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为f(p),当n为何值时,f(p)最大.
(1)求出一次摸球从n+2个球中任选两个方法,两球颜色相同有Cn2+C22种选法,即可求出摸球中奖的概率P; (2)n=3,求出中奖的概率,三次摸球是独立重复实验,直接根据公式求三次摸球恰有一次中奖的概率; (3)求出三次摸球恰有一次中奖的概率为f(p),利用导数确定函数的单调性,求出n的值,使f(p)最大. 【解析】 (1)一次摸球从n+2个球中任选两个,有Cn+22种选法,其中两球颜色相同有Cn2+C22种选法;一次摸球中奖的概率(4分) (2)若n=3,则一次摸球中奖的概率是,三次摸球是独立重复实验,三次摸球中恰有一次中奖的概率是(8分) (3)设一次摸球中奖的概率是p,则三次摸球中恰有一次中奖的概率是f(p)=C31•p•(1-p)2=3p3-6p2+3p,0<p<1,∵f'(p)=9p2-12p+3=3(p-1)(3p-1)∴f(p)在是增函数,在是减函数, ∴当时,f(p)取最大值(10分) ∴(n≥2,n∈N*), ∴n=2,故n=2时,三次摸球中恰有一次中奖的概率最大.(12分)
复制答案
考点分析:
相关试题推荐
已知等比数列{an}的前n项和为Sn,若am,am+2,am+1(m∈N*)成等差数列,试判断Sm,Sm+2,Sm+1是否成等差数列,并证明你的结论.
查看答案
在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后.得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为manfen5.com 满分网
(1)求A1A的长;
(2)在线段BC1上是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网(x∈R),设函数manfen5.com 满分网
(1)求函数f(x)的值域;
(2)已知锐角△ABC的三个内角分别为A,B,C,若manfen5.com 满分网manfen5.com 满分网,求f(C)的值.
查看答案
直线manfen5.com 满分网,(t为参数)被圆manfen5.com 满分网,(θ为参数)所截得的弦长为    查看答案
函数f(x)=|x-1|+|x+2|的最小值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.