先对函数g(x)求导判断出函数g(x)的单调性并求其最大值,然后对函数f(x)进行求导判断单调性求其最小值,最后令函数f(x)的最小值大于等于函数g(x)的最大值即可.
【解析】
∵g(x)=x-lnx∴g'(x)=1-,x∈[1,e],g'(x)≥0 函数g(x)单调递增
g(x)的最大值为g(e)=e-1
∵f(x)=x+∴f'(x)=,令f'(x)=0∵a>0∴x=a
当0<a<1 f(x)在[1,e]上单调增 f(1)最小=1+a2≥e-1∴1>a≥
当1≤a≤e 列表可知 f(a)最小=2a≥e-1 恒成立
当a>e时 f(x)在[1,e]上单调减 f(e)最小=≥e-1 恒成立
综上a≥
故答案为:a≥