满分5 > 高中数学试题 >

命题p:∀x∈R,x2+x>2,则命题p的否定为 .

命题p:∀x∈R,x2+x>2,则命题p的否定为    
命题p:∀x∈R,x2+x>2,是一个全称命题,其否定命题一定是一个特称命题,由全称命题的否定方法,我们易得到答案. 【解析】 ∵命题p:∀x∈R,x2+x>2, ∴命题¬p:∃x∈R,x2+x≤2 故答案为:∃x∈R,x2+x≤2
复制答案
考点分析:
相关试题推荐
设集合manfen5.com 满分网,则A∪B=    查看答案
设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为manfen5.com 满分网,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设manfen5.com 满分网,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
查看答案
manfen5.com 满分网已知椭圆C:manfen5.com 满分网的左、右焦点分别为F1,F2,下顶点为A,点P是椭圆上任一点,⊙M是以PF2为直径的圆.
(Ⅰ)当⊙M的面积为manfen5.com 满分网时,求PA所在直线的方程;
(Ⅱ)当⊙M与直线AF1相切时,求⊙M的方程;
(Ⅲ)求证:⊙M总与某个定圆相切.
查看答案
如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出.
(1)计算A,C两站距离,及B,C两站距离;
(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换.
(3)求10点时甲、乙两车的距离.
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
设数列{an} 的前n项和Sn=n2,数列{bn} 满足manfen5.com 满分网
(Ⅰ)若b1,b2,b8 成等比数列,试求m 的值;
(Ⅱ)是否存在m,使得数列{bn} 中存在某项bt 满足b1,b4,bt(t∈N*,t≥5)成等差数列?若存在,请指出符合题意的m
的个数;若不存在,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.