根据向量数量积与夹角的关系及函数单调性的定义,我们及判断出命题p与命题q的真假,进而根据复数命题的真值表,我们对四个答案逐一进行分析,即可得到答案.
【解析】
时,向量与可能反向
故命题p:若,则与的夹角为钝角为假命题
若定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数,
f(x)在(-∞,+∞)上的单调性无法确定
故命题q:定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数,则f(x)在(-∞,+∞)上是增函数也为假命题
故“p或q”是假命题,故A错误;
“p且q”是假命题,故B正确;
¬p、¬q均为真命题,故C、D错误;
故选B