已知△ABC的三边长|CB|,|AB|,|CA|成等差数列,若点A,B的坐标分别为(-1,0),(1,0).
(Ⅰ)求顶点C的轨迹W的方程;
(Ⅱ)若线段CA的延长线交轨迹W于点D,当
时,求线段CD的垂直平分线l与x轴交点的横坐标的取值范围.
考点分析:
相关试题推荐
在直三棱柱ABC-A
1B
1C
1中,AC=4,CB=2,AA
1=2,∠ACB=60°,E、F分别是A
1C
1,BC的中点.
(1)证明:平面AEB⊥平面BB
1C
1C;
(2)证明:C
1F∥平面ABE;
(3)设P是BE的中点,求三棱锥P-B
1C
1F的体积.
查看答案
某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
查看答案
已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如下表:
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在△ABC中,AC=2,BC=3,
,求△ABC的面积.
查看答案
在平面直角坐标系中,设点P(X,Y)定义[OP]=|x|+|y|,其中O为坐标原点,对于以下结论:①符合[OP]=1的点P的轨迹围成的图形的面积为2;
②设P为直线
+2y-2=0上任意一点,则[OP]的最小值为1;
③设P为直线y=kx+b(k,b∈R)上的任意一点,则“使[OP]最小的点P有无数个”的必要不充分条件是“k=±1”;其中正确的结论有
(填上你认为正确的所有结论的序号)
查看答案
m不论取任何实数值,方程|
的实根个数都是
.
查看答案