满分5 > 高中数学试题 >

已知函数. (1)求; (2)已知数列{an}满足a1=2,an+1=F(an)...

已知函数manfen5.com 满分网
(1)求manfen5.com 满分网
(2)已知数列{an}满足a1=2,an+1=F(an),求数列{an}的通项公式;
(3)求证:manfen5.com 满分网
(3)观察已知函数可发现F(x)+F(1-x)=3,从而代入利用倒序相加可求 (2)由已知可得,求倒整理可构造,即{}是等差数列,从而可求 (3)用放缩法证明.由(2n)2>(2n)2-1=(2n-1)(2n+1),即,从而有,从而可证 【解析】 (1)因为 所以设S=① S=② ①+②得:=3×2008=6024, 所以S=3012. (2)由an+1=F(an)两边同减去1,得, 所以, 所以,是以2为公差以为首项的等差数列, 所以. (3)用放缩法证明. ∵(2n)2>(2n)2-1=(2n-1)(2n+1),∴, ∴, 则, 所以,.
复制答案
考点分析:
相关试题推荐
设函数f(x)=alnx-bx2(x>0);
(1)若函数f(x)在x=1处与直线manfen5.com 满分网相切
①求实数a,b的值;
②求函数manfen5.com 满分网上的最大值.
(2)当b=0时,若不等式f(x)≥m+x对所有的manfen5.com 满分网都成立,求实数m的取值范围.
查看答案
已知△ABC的三边长|CB|,|AB|,|CA|成等差数列,若点A,B的坐标分别为(-1,0),(1,0).
(Ⅰ)求顶点C的轨迹W的方程;
(Ⅱ)若线段CA的延长线交轨迹W于点D,当manfen5.com 满分网时,求线段CD的垂直平分线l与x轴交点的横坐标的取值范围.

manfen5.com 满分网 查看答案
manfen5.com 满分网在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.
(1)证明:平面AEB⊥平面BB1C1C;
(2)证明:C1F∥平面ABE;
(3)设P是BE的中点,求三棱锥P-B1C1F的体积.
查看答案
manfen5.com 满分网某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
查看答案
已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如下表:
xmanfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
y1manfen5.com 满分网-1
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在△ABC中,AC=2,BC=3,manfen5.com 满分网,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.