先求f′(x)=0的值,发现需要讨论a的正负,分别判定在f′(x)=0的点附近的导数的符号的变化情况,来确定极大值点与极小值点,求出极值.
【解析】
f′(x)=axex(x+2),
(i)当a>0时,
当f′(x)>0时,得x>0或x<-2;
当f′(x)<0时,得-2<x<0;
∴f(x)的单调递减区间为(-2,0);
f(x)的单调递增区间为(-∞,-2)和(0,+∞).(5分)
故当x=-2时,f(x)有极大值,其极大值为f(-2)=4ae-2.(6分)
(ii)当a<0时,
当f′(x)<0时,得x>0或x<-2;
当f′(x)>0时,得-2<x<0;
∴f(x)的单调递增区间为(-2,0);
f(x)的单调递减区间为(-∞,-2)和(0,+∞).(5分)
故当x=0时,f(x)有极大值,其极大值为f(0)=0.(6分)