满分5 > 高中数学试题 >

已知函数f(x)=-x3+ax2-4(a∈R),f′(x)是f(x)的导函数. ...

已知函数f(x)=-x3+ax2-4(a∈R),f′(x)是f(x)的导函数.
(1)当a=2时,对于任意的m∈[-1,1],n∈[-1,1]求f(m)+f′(n)的最小值;
(2)若存在x∈(0,+∞),使f(x)>0求a的取值范围.
(1)欲求f(m)+f′(n)的最小值,就分别求f(m)、f′(n)的最小值 (2)存在x∈(0,+∞),使f(x)>0即寻找f(x)max>0是变量a的范围. 【解析】 (1)由题意知f(x)=-x3+2x2-4,f′(x)=-3x2+4x 令f′(x)=0,得x=0或 当x在[-1,1]上变化时,f(x),f′(x)随x的变化情况如下表: ∴对于m∈[-1,1],f(m)的最小值为f(0)=-4, ∵f′(x)=-3x2+4x的对称轴为且抛物线开口向下 ∴对于n∈[-1,1],f′(n)的最小值为f′(-1)=-7, ∴f(m)+f′(n)的最小值为-11. (2)∵f′(x)=-3x(x-) ①若a≤0,当x>0,时f′(x)<0 ∴f(x)在[0,+∞)上单调递减,又f(0)=-4,则当x>0时,f(x)<-4∴当a≤0时,不存在x>0,使f(x)>0 ②若a>0,则当0<x<时,f′(x)>0, 当x>时,f′(x)<0从而f(x)在(0,]上单调递增,在[,+∞)上单调递减, ∴当x∈(0,+∞)时,f(x)max=f()= 根据题意,,即a3>27,解得a>3 综上,a的取值范围是(3,+∞)
复制答案
考点分析:
相关试题推荐
已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.
查看答案
如图,在直角梯形ABEF中,将四边形DCEF沿CD折起,使∠FDA=60°,得到一个空间几何体.
(1)求证:BE∥平面ADF;
(2)求直线EF与平面ABCD所成角的正切值的大小.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,manfen5.com 满分网
(1)求sinC;
(2)若c=2,sinB=2sinA,求△ABC的面积.
查看答案
如图矩形ORTM内放置5个大小相同的边长为1的正方形,其中A,B,C,D都在矩形的边上,若向量manfen5.com 满分网,则x2+y2=   
manfen5.com 满分网 查看答案
已知数列{an}是公差为d的等差数列,其前n项的和为Sn,则有Sm+n=Sm+Sn+mnd.类似地,对公比是q的等比数列{bn}来说,设其前n项的积为Tn,则关于Tm+n,Tm,Tn及q的一个关系式为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.