满分5 > 高中数学试题 >

如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4将△CBD沿BD...

manfen5.com 满分网如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD
(I)求证:AB⊥DE
(Ⅱ)求三棱锥E-ABD的侧面积.
(I)要证:AB⊥DE,容易推出AB⊥BD,可证明AB⊥平面EBD即可. (Ⅱ)求三棱锥E-ABD的侧面积,需要求出三个侧面三角形的面积即可. 【解析】 (I)证明:在△ABD中,∵AB=2,AD=4,∠DAB=60° ∴ ∴AB2+BD2=AD2,∴AB⊥DB, 又∵平面EBD⊥平面ABD 平面EBD∩平面ABD=BD,AB⊂平面ABD,∴AB⊥平面EBD, ∵DE⊂平面EBD,∴AB⊥DE. (Ⅱ)【解析】 由(I)知AB⊥BD,CD∥AB,∴CD⊥BD,从而DE⊥DB 在Rt△DBE中,∵,DE=DC=AB=2 ∴ 又∵AB⊥平面EBD,BE⊂平面EBD, ∴AB⊥BE, ∵BE=BC=AD=4,∴, ∵DE⊥BD,平面EBD⊥平面ABD∴ED⊥平面ABD 而AD⊂平面ABD,∴ED⊥AD,∴ 综上,三棱锥E-ABD的侧面积,
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.
查看答案
甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为pmanfen5.com 满分网,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为manfen5.com 满分网
(Ⅰ)若右图为统计这次比赛的局数n和甲、乙的总得分数S、T的程序框图.其中如果甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.请问在第一、第二两个判断框中应分别填写什么条件?
(Ⅱ)求p的值;
(Ⅲ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
注:“n=0”,即为“n←0”或为“n:=0”.

manfen5.com 满分网 查看答案
某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日    期3月1日3月2日3月3日3月4日3月5日
温差x(°C)101113128
发芽数y(颗)2325302616
(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“manfen5.com 满分网”的概率;
(2)甲,乙两位同学都发现种子的发芽率与昼夜温差近似成线性关系,给出的拟合直线分别为y=2.2x与y=2.5x-3,试利用“最小平方法(也称最小二乘法)的思想”,判断哪条直线拟合程度更好.
查看答案
设AB=6,在线段AB上任取两点(端点A、B除外),将线段AB分成了三条线段,
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.
查看答案
奇瑞公司生产的“奇瑞”轿车是我国民族品牌.该公司2009年生产的“旗云”、“风云”、“QQ”三类经济型轿车中,每类轿车均有舒适和标准两种型号.某周产量如下表:
车型旗云风云QQ
舒适100150x
标准300y600
若按分层抽样的方法在这一周生产的轿车中抽取50辆进行检测,则必须抽取“旗云”轿车10辆,“风云”轿车15辆.
(1)求x、y的值;
(2)在年终促销活动中,奇瑞公司奖给了某优秀销售公司2辆舒适型和3辆标准型“QQ”轿车,该销售公司又从中随机抽取了2辆作为奖品回馈消费者.求至少有一辆是舒适型轿车的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.