满分5 > 高中数学试题 >

舰A在舰B的正东6千米处,舰C在舰B的北偏西30°且与B相距4千米,它们准备捕海...

舰A在舰B的正东6千米处,舰C在舰B的北偏西30°且与B相距4千米,它们准备捕海洋动物,某时刻A发现动物信号,4秒后B、C同时发现这种信号,A发射麻醉炮弹  设舰与动物均为静止的,动物信号的传播速度为1千米/秒,若不计空气阻力与舰高,问舰A发射炮弹的方位角应是多少?

manfen5.com 满分网
对空间物体的定位,一般可利用声音传播的时间差来建立方程.由于B、C同时发现动物信号,记动物所在位置为P,则P在线段BC的中垂线上,又由A、B两舰发现动物信号的时间差为4秒,知|PB|-|PA|=4,从而P在双曲线的右支上,所以可确定P的坐标,从而问题得解. 【解析】 取AB所在直线为x轴,以AB的中点为原点,建立如图所示的直角坐标系  由题意可知,A、B、C舰的坐标为(3,0)、(-3,0)、(-5,2),由于B、C同时发现动物信号,记动物所在位置为P,则|PB|=|PC|于是P在线段BC的中垂线上,易求得其方程为x-3y+7=0. 又由A、B两舰发现动物信号的时间差为4秒,知|PB|-|PA|=4,故知P在双曲线的右支上直线与双曲线的交点为(8,5),此即为动物P的位置,利用两点间距离公式,可得|PA|=10, 据已知两点的斜率公式,得kPA=,所以直线PA的倾斜角为60°,于是舰A发射炮弹的方位角应是北偏东30°.
复制答案
考点分析:
相关试题推荐
如图,抛物线C1:y2=8x与双曲线manfen5.com 满分网有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1.已知点manfen5.com 满分网,过点P作互相垂直且分别与圆M、圆N相交的直线l1和l2,设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t.manfen5.com 满分网是否为定值?请说明理由.
查看答案
已知抛物线C1的方程为y=ax2(a>0),圆C2的方程为x2+(y+1)2=5,直线l1:y=2x+m(m<0)是C1、C2的公切线.F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点的C1的切线l交y轴于点B,设manfen5.com 满分网,证明:点M在一定直线上.

manfen5.com 满分网 查看答案
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
查看答案
如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,manfen5.com 满分网
(1)证明:平面ACD⊥平面ADE;
(2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式.

manfen5.com 满分网 查看答案
一个多面体的直观图,正(主)视图,侧(左)视图如下所示,其中正(主)视图、侧(左)视图为边长为a的正方形.
(1)请在指定的框内画出多面体的俯视图;
(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(3)求该多面体的表面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.