满分5 > 高中数学试题 >

已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:有一个公共点...

manfen5.com 满分网已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:manfen5.com 满分网有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求manfen5.com 满分网的取值范围.
(1)先利用点A在圆上求出m,再利用直线PF1与圆C相切求出直线PF1与的方程以及c,再利用点A在椭圆上求出2a,即可求出椭圆E的方程; (2)先把用点Q的坐标表示出来,再利用Q为椭圆E上的一个动点以及基本不等式即可求出的取值范围. 【解析】 (1)点A代入圆C方程,得(3-m)2+1=5. ∵m<3, ∴m=1. 设直线PF1的斜率为k, 则PF1:y=k(x-4)+4,即kx-y-4k+4=0. ∵直线PF1与圆C相切,圆C:(x-1)2+y2=5, ∴, 解得. 当k=时,直线PF1与x轴的交点横坐标为,不合题意,舍去. 当k=时,直线PF1与x轴的交点横坐标为-4, ∴c=4. ∴F1(-4,0),F2(4,0). 故2a=AF1+AF2=,,a2=18,b2=2. 椭圆E的方程为:. (2),设Q(x,y), ,. ∵,即x2+(3y)2=18,而x2+(3y)2≥2|x|•|3y|, ∴-18≤6xy≤18. 则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36]. ∴x+3y的取值范围是[-6,6] ∴x+3y-6的范围只:[-12,0]. 即的取值范围是[-12,0].
复制答案
考点分析:
相关试题推荐
已知数列{an}是首项为1公差为正的等差数列,数列{bn}是首项为1的等比数列,设Cn=anbn(n∈N*),且数列{cn}的前三项依次为1,4,12,
(1)求数列an.bn的通项公式;
(2)若等差数列{an}的前n项和为Sn,求数列manfen5.com 满分网的前项的和Tn
查看答案
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E.F分别是PC.PD的中点,PA=AB=1,BC=2.
(I)求证:EF∥平面PAB;
(II)求证:平面PAD⊥平面PDC;
(III)求二面角A-PD-B的余弦值.

manfen5.com 满分网 查看答案
甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>manfen5.com 满分网),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为manfen5.com 满分网
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
查看答案
已知函数manfen5.com 满分网
(1)若manfen5.com 满分网求a的值;
(2)求函数f(x)在manfen5.com 满分网上最大值和最小值.
查看答案
(考生注意:请在下列三题中任选一题作答,如果多做.则按所做的第一题评阅计分)
A.(选修4-4坐标系与参数方程) 已知圆C的圆心为(6,manfen5.com 满分网),半径为5,直线manfen5.com 满分网被圆截得的弦长为8,则a=   
B.(选修4-5 不等式选讲)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是   
C.(选修4-1 几何证明选讲),AB为圆O的直径,弦AC.BD交于点P,若AB=3,CD=1,则sin∠APD=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.