(1)根据题目中所给的向量的数量积写出数量积的公式,得到关于三角形边和角的等式关系,根据正弦定理把变化为角,逆用两角和的正弦公式,得到角B的余弦值,根据角的范围写出角.
(2)本题要求向量的数量积的最值,而这两个向量的夹角是上一问求出的B,在表示向量数量积时,只有两边之积是一个变量,因此要表示出两边之积,根据余弦定理和基本不等式得到ac的范围,得到结果.
【解析】
(Ⅰ)∵,
∴(2a+c)accosB+cabcosC=0,
即(2a+c)cosB+bcosC=0,
则(2sinA+sinC)cosB+sinBcosC=0
∴2sinAcosB+sin(C+B)=0,
即,
B是三角形的一个内角,
∴
(Ⅱ)∵,
∴12=a2+c2+ac≥3ac,即ac≤4
∴=,
即的最小值为-2