满分5 > 高中数学试题 >

设△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足. (Ⅰ)求角B的...

设△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足manfen5.com 满分网
(Ⅰ)求角B的大小;
(Ⅱ)若manfen5.com 满分网,试求manfen5.com 满分网的最小值.
(1)根据题目中所给的向量的数量积写出数量积的公式,得到关于三角形边和角的等式关系,根据正弦定理把变化为角,逆用两角和的正弦公式,得到角B的余弦值,根据角的范围写出角. (2)本题要求向量的数量积的最值,而这两个向量的夹角是上一问求出的B,在表示向量数量积时,只有两边之积是一个变量,因此要表示出两边之积,根据余弦定理和基本不等式得到ac的范围,得到结果. 【解析】 (Ⅰ)∵, ∴(2a+c)accosB+cabcosC=0, 即(2a+c)cosB+bcosC=0, 则(2sinA+sinC)cosB+sinBcosC=0 ∴2sinAcosB+sin(C+B)=0, 即, B是三角形的一个内角, ∴ (Ⅱ)∵, ∴12=a2+c2+ac≥3ac,即ac≤4 ∴=, 即的最小值为-2
复制答案
考点分析:
相关试题推荐
如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.
(1)求证:EF∥平面A1BC1
(2)求证:平面D1DBB1⊥平面A1BC1

manfen5.com 满分网 查看答案
设a>0,函数manfen5.com 满分网,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,则实数a的取值范围为    查看答案
选做题:若a,b,c>0,且a2+ab+ac+bc=4,则2a+b+c的最小值为    查看答案
已知直线kx-y+1=0与圆C:x2+y2=4相交于A,B两点,若点M在圆C上,且有manfen5.com 满分网(O为坐标原点),则实数k=    查看答案
已知数列{an}满足a1=1,a2=2,an+2=manfen5.com 满分网,则该数列的前20项的和为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.