满分5 > 高中数学试题 >

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+...

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数manfen5.com 满分网,求函数f(n)的最小值;
(3)设manfen5.com 满分网表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
(1)把点P代入直线方程,可得an+1-an=1进而判断数列{an}是以1为首项,1为公差的等差数列数列{an}的通项公式可得. (2)分别表示出f(n)和f(n+1),通过f(n+1)-f(n)>0判断f(n)单调递增,故f(n)的最小值是 (3)把(1)中的an代入求得bn,进而求得最后(n-1)Sn-1-(n-2)Sn-2=nSn-n=n(Sn-1),判断存在关于n的整式g(x)=n. 【解析】 (1)由点P(an,an+1)在直线x-y+1=0上, 即an+1-an=1,且a1=1,数列{an}是以1为首项, 1为公差的等差数列an=1+(n-1)•1=n(n≥2), a1=1同样满足,所以an=n (2) 所以f(n)是单调递增,故f(n)的最小值是 (3),可得, nSn-(n-1)Sn-1=Sn-1+1, (n-1)Sn-1-(n-2)Sn-2=Sn-2+1S2-S1=S1+1nSn-S1 =S1+S2+S3++Sn-1+n-1S1+S2+S3++Sn-1 =nSn-n=n(Sn-1),n≥2g(n)=n 故存在关于n的整式g(x)=n, 使得对于一切不小于2的自然数n恒成立.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,常数a>0.
(1)设m•n>0,证明:函数f(x)在[m,n]上单调递增;
(2)设0<m<n且f(x)的定义域和值域都是[m,n],求常数a的取值范围.
查看答案
即将开工的上海与周边城市的城际列车铁路线将大大缓解交通的压力,加速城市之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果每次拖7节车厢,则每天能来回10次.每天来回次数是每次拖挂车厢个数的一次函数,每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数.(注:营运人数指火车运送的人数)
查看答案
已知函数f(x)=x2-x+alnx
(1)当x≥1时,f(x)≤x2恒成立,求a的取值范围;
(2)讨论f(x)在定义域上的单调性.
查看答案
已知向量a=(sin(manfen5.com 满分网+x),manfen5.com 满分网cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=manfen5.com 满分网,求角A的值.
查看答案
三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“不等式两边同除以x2,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.