满分5 > 高中数学试题 >

抛物线y2=4x的焦点到准线的距离是 .

抛物线y2=4x的焦点到准线的距离是   
根据抛物线的方程求得抛物线的焦点坐标和准线的方程,进而利用点到直线的距离求得焦点到准线的距离. 【解析】 根据题意可知焦点F(1,0),准线方程x=-1, ∴焦点到准线的距离是1+1=2 故答案为2.
复制答案
考点分析:
相关试题推荐
若复数z满足manfen5.com 满分网,则|z|=    查看答案
manfen5.com 满分网已知函数f(x)=x+manfen5.com 满分网的定义域为(0,+∞),且f(2)=2+manfen5.com 满分网.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
查看答案
已知曲线C:manfen5.com 满分网
(1)曲线C经过点manfen5.com 满分网,求b的值;
(2)动点(x,y)在曲线C,求x2+2y的最大值;
(3)由曲线C的方程能否确定一个函数关系式y=f(x)?如能,写出解析式;如不能,再加什么条件就可使x、y间建立函数关系,并写出解析式.
查看答案
已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.
(Ⅰ)求数列{an}的通项公式:
(Ⅱ)若数列{an}和数列{bn}满足等式:an==manfen5.com 满分网(n为正整数),求数列{bn}的前n项和Sn查看答案
关于x的不等式manfen5.com 满分网<0的解集为(-1,b).
(1)求实数a、b的值;
(2)若z1=a+bi,z2=cosα+isinα,且z1z2为纯虚数,求manfen5.com 满分网的值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.