满分5 > 高中数学试题 >

在平面直角坐标系xoy中,动点P到直线x=4的距离与它到点F(2,0)的距离之比...

在平面直角坐标系xoy中,动点P到直线x=4的距离与它到点F(2,0)的距离之比为manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)过点F(2,0)作垂直于x轴的直线l,求轨迹C与y轴及直线l围成的封闭图形的面积.
(1)设P(x,y),由题目中的:“距离之比”,将距离用点P的坐标表示,得到关于x,y的关系式即可; (2)由于所求封闭图形不是规则的图形,考虑利用积分求面积,先构造一个函数即.之后求其积分即可. 【解析】 (1)设P(x,y),由题意有, 化简得. 即动点P的轨迹C的方程为. (2)当y≥0时,,即. 设所求的图形的面积为S,则 =. 故所求的封闭图形的面积.
复制答案
考点分析:
相关试题推荐
过点P(-3,0)且倾斜角为30°的直线和曲线manfen5.com 满分网(t为参数)相交于A,B两点.求线段AB的长.
查看答案
已知矩阵manfen5.com 满分网,若矩阵A属于特征值6的一个特征向量为manfen5.com 满分网,属于特征值1的一个特征向量为manfen5.com 满分网,求矩阵A.
查看答案
(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为manfen5.com 满分网,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程manfen5.com 满分网,如果椭圆C1manfen5.com 满分网经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且manfen5.com 满分网,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若manfen5.com 满分网,求数列{pn}的通项公式pn
查看答案
(理)已知向量manfen5.com 满分网manfen5.com 满分网 (n为正整数),函数manfen5.com 满分网,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},对任意正整数n,都有bn•(4an2-5)=1成立,设Sn为数列{bn}的前n项和,求manfen5.com 满分网
(3)在点列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在两点Ai,Aj(i,j为正整数)使直线AiAj的斜率为1?若存在,则求出所有的数对(i,j);若不存在,请你写出理由.
查看答案
建造一条防洪堤,其断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为manfen5.com 满分网平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段BC与两腰长的和)要最小.
(1)求外周长的最小值,此时防洪堤高h为多少米?
(2)如防洪堤的高限制在manfen5.com 满分网的范围内,外周长最小为多少米?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.