满分5 > 高中数学试题 >

在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足acosB+bcos...

在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足acosB+bcosA=2ccosC
(1)求角C的值;
(2)若c=2,求△ABC面积的最大值.
(1)利用正弦定理把题设中关于边的等式转换成角的正弦,进而利用两角和公式化简整理求得cosC,进而求得C. (2)根据余弦定理求得a和b的不等式关系,进而利用三角形面积公式表示出三角形的面积,利用a和b的不等式关系求得三角形面积的最大值. 【解析】 (1)由题意得sinAcosB+sinBcosA=2sinCcosC, 即sinC=2sinCcosC,故cosC=,所以 (2), 所以ab=a2+b2-4≥2ab-4,即ab≤4,等号当a=b时成立 ∴S△ABC=,
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°AB=2AD=2CD=2.
(1)求证:AC⊥平面BB1C1C;
(2)在A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.
查看答案
对于在区间[a,b]上有意义的两个函数m(x)与n(x),如果对于区间[a,b]中的任意x均有|m(x)-n(x)|≤1,则称m(x)与n(x)在[a,b]上是“密切函数”,[a,b]称为“密切区间”,若函数m(x)=x2-3x+4与n(x)=2x-3在区间[a,b]上是“密切函数”,则b-a的最大值为    查看答案
设函数f(x)=manfen5.com 满分网(a<0)的定义域为D,若所有点(s,f(x))(s,t∈D)构成一个正方形区域,则a的值为    查看答案
如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路AD,DC,且拐弯处的转角为120°.已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟.若此人步行的速度为每分钟50米,则该扇形的半径OA的长为   
manfen5.com 满分网 查看答案
已知非零向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网
①若manfen5.com 满分网manfen5.com 满分网共线,则manfen5.com 满分网=-2manfen5.com 满分网
②若manfen5.com 满分网manfen5.com 满分网不共线,则以manfen5.com 满分网为边长的三角形为直角三角形;
manfen5.com 满分网; ④manfen5.com 满分网
其中正确的命题序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.