满分5 > 高中数学试题 >

设a>0,a≠1,函数有最大值,则不等式loga(x2-5x+7)>0的解集为 ...

设a>0,a≠1,函数manfen5.com 满分网有最大值,则不等式loga(x2-5x+7)>0的解集为   
函数有最大值,由于lg(x2-2x+3)≥lg2,可得a的范围,然后解不等式,可求不等式的解集. 【解析】 设a>0,a≠1,函数有最大值, ∵lg(x2-2x+3)≥lg2,所以函数f(x)有最小值, ∴0<a<1,则不等式loga(x2-5x+7)>0的解为 , 解得2<x<3,所以不等式的解集为(2,3). 故答案为:(2,3).
复制答案
考点分析:
相关试题推荐
对a,b∈R,记max{a,b}=manfen5.com 满分网函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是    查看答案
设向量a,b满足:manfen5.com 满分网manfen5.com 满分网,则|b|=    查看答案
若集合manfen5.com 满分网,则A∩B等于    查看答案
已知函数f(x)=λx2+λx,g(x)=λx+lnx,h(x)=f(x)+g(x),其中λ∈R,且λ≠0.
(1)当λ=-1时,求函数g(x)的最大值;
(2)求函数h(x)的单调区间;
(3)设函数manfen5.com 满分网若对任意给定的非零实数x,存在非零实数t(t≠x),使得φ′(x)=φ′(t)成立,求实数λ的取值范围.
查看答案
设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.