先求出两直线经过的定点坐标,再求出直线与x 轴的交点,与y 轴的交点,得到所求的四边形,利用四边形的面积等于三角形ABD的面积和梯形 OCBD的面积之和,再应用二次函数的性质求出面积最小时的k 值.
【解析】
如图所示:
直线,过定点B(2,4),
与y 轴的交点C(0,4-k),
直线,过定点(2,4 ),与x 轴的交点A( k2+2,0),
由题意知,四边形的面积等于三角形ABD的面积和梯形 OCBD的面积之和,故所求四边形的面积为
×4×( k2+2-2)+=k2-k+8,∴k=时,所求四边形的面积最小,
故答案为 .