满分5 > 高中数学试题 >

高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛.比赛规...

高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛.比赛规则是:
①按“单打、双打、单打”顺序进行三盘比赛;
②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛.已知每盘比赛双方胜出的概率均为manfen5.com 满分网
(1)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?
(2)高三(1)班代表队连胜两盘的概率是多少?
(1)本题要应用分步计数原理,先排出参加单打的队员,由于代表队中每名队员至少参加一盘比赛,但不得参加两盘单打比赛,排出参加双打的队员,根据分步计数原理得到结果. (2)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜.根据相互独立事件同时发生的概率和互斥事件的概率公式,得到结果. 【解析】 (1)参加单打的队员有A32种方法.参加双打的队员有C21种方法. 所以,高三(1)班出场阵容共有A32•C21=12(种). …(6分) (2)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜, 根据相互独立事件同时发生的概率和互斥事件的概率公式,连胜两盘的概率为.…(12分)
复制答案
考点分析:
相关试题推荐
集合A是由适合以下性质的函数f(x)组成的:对于任意的x≥0,f(x)∈(1,4],且f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-manfen5.com 满分网及f2(x)=1+3•(manfen5.com 满分网(x≥0)是否在集合A中?试说明理由;
(2)对于(1)中你认为是集合A中的函数f(x),不等式f(x)+f(x+2)≤k对于任意的x≥0总成立.求实数k的取值范围.
查看答案
已知f(x)=ax4+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=x-2.  
(1)求y=f(x)的解析式;
(2)求y=f(x)的单调递增区间.
查看答案
已知:f(x)=lg(ax-bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)判断f(x)在其定义域内的单调性;
(3)若f(x)在(1,+∞)内恒为正,试比较a-b与1的大小.
查看答案
设函数f(x)=x2+ax+b•2x(a≠0),若{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}≠φ,请你写出满足上述条件的一个函数f(x)的例子,如函数f(x)=    查看答案
设0≤x≤2,则函数manfen5.com 满分网的最大值是    ,最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.