对于给定数列{c
n},如果存在实常数p,q使得c
n+1=pc
n+q对于任意n∈N
*都成立,我们称数列{c
n}是“M类数列”.
(1)若a
n=2n,b
n=3•2
n,n∈N
*,数列{a
n}、{b
n}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{a
n}是“M类数列”,则数列{a
n+a
n+1}也是“M类数列”;
(3)若数列{a
n}满足a
1=2,a
n+a
n+1=3t•2
n(n∈N
*),t为常数.求数列{a
n}前2009项的和.并判断{a
n}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{a
n}的相邻两项a
n、a
n+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.
考点分析:
相关试题推荐
已知函数
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)当a≥1时,判断函数f(x)在区间[0,+∞)上的单调性;
(3)若函数f(x)在区间[1,+∞)上是增函数,求a的取值范围.
查看答案
△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(
-1)c.
(1)求角A的大小;
(2)已知当x∈[
,
]时,函数f(x)=cos2x+asinx的最大值为3,求△ABC的面积.
查看答案
如图:三棱锥P-ABC中,PA⊥底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为
.若M是BC的中点,求:
(1)三棱锥P-ABC的体积;
(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).
查看答案
若集合A={x|log
a(x
2-x-2)>2,a>0且a≠1}.
(1)若a=2,求集合A;
(2)若
,求a的取值范围.
查看答案
直角△POB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若弧AB等分△POB的面积,且∠AOB=α弧度,则 ( )
A.tanα=α
B.tanα=2α
C.sinα=2cosα
D.2sinα=cosα
查看答案