若
,则z
2=
.
考点分析:
相关试题推荐
(文)本题共有3个小题,第1、2小题满分各5分,第3小题满分7分.第3小题根据不同思维层次表现予以不同评分.
对于数列{a
n}
(1)当{a
n}满足a
n+1-a
n=d(常数)且
(常数),证明:{a
n}为非零常数列.
(2)当{a
n}满足a
n+12-a
n2=d'(常数)且
(常数),判断{a
n}是否为非零常数列,并说明理由.
(3)对(1)、(2)等式中的指数进行推广,写出推广后的一个正确结论(不用说明理由).
查看答案
(文)斜率为1的直线过抛物线y
2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量
平移得直线m,N是m上的动点,求
的最小值.
(3)设C(2,0),D为抛物线y
2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.
查看答案
(理)斜率为1的直线过抛物线y
2=2px(p>0)的焦点,且与抛物线交于两点A、B.
(1)若p=2,求|AB|的值;
(2)将直线AB按向量
平移得直线m,N是m上的动点,求
的最小值.
(3)设C(p,0),D为抛物线y
2=2px(p>0)上一动点,是否存在直线l,使得l被以CD为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.
查看答案
课本中介绍了诺贝尔奖,其发放方式为:每年一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出了最有益贡献的人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后基金总额已达19516万美元,假设基金平均年利率为
r=6.24%.
(1)请计算:1999年诺贝尔奖发奖后基金总额为多少万美元?当年每项奖金发放多少万美元(结果精确到1万美元)?
(2)设f(x)表示为第x(x∈N
*)年诺贝尔奖发奖后的基金总额(1998年记为f(1)),试求函数f(x)的表达式.并据此判断新民网一则新闻“2008年度诺贝尔奖各项奖金高达168万美元”是否与计算结果相符,并说明理由.
查看答案