满分5 > 高中数学试题 >

用数学归纳法证明等式:(a≠1,n∈N*),验证n=1时,等式左边= .

用数学归纳法证明等式:manfen5.com 满分网(a≠1,n∈N*),验证n=1时,等式左边=   
根据题目意思知:用数学归纳法证明:“1+a+a2+…+an+1=(a≠1)”在验证n=1时,左端计算所得的项.把n=1代入等式左边即可得到答案. 【解析】 用数学归纳法证明:“1+a+a2+…+an+1=(a≠1)”时, 在验证n=1时,把当n=1代入, 左端=1+a+a2. 故答案为:1+a+a2
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网的定义域是    查看答案
计算:manfen5.com 满分网=    查看答案
(文)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为manfen5.com 满分网,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;

(2)已知抛物线C1:y2=2x,经过伸缩变换后得抛物线C2:y2=32x,求伸缩比λ.
(3)射线l的方程manfen5.com 满分网,如果椭圆C1manfen5.com 满分网经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且manfen5.com 满分网,求椭圆C2的方程.
查看答案
(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为manfen5.com 满分网,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程manfen5.com 满分网,如果椭圆C1manfen5.com 满分网经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且manfen5.com 满分网,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若manfen5.com 满分网,求数列{pn}的通项公式pn
查看答案
(文)已知向量manfen5.com 满分网manfen5.com 满分网 (n为正整数),函数manfen5.com 满分网,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},其中bn=an+12-an2,设Sn为数列{bn}的前n项和,求manfen5.com 满分网
(3)已知点列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,设过任意两点Ai,Aj(i,j为正整数)的直线斜率为kij,当i=2008,j=2010时,求直线AiAj的斜率.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.