如图,已知M(m,m
2)、N(n,n
2)是抛物线C:y=x
2上两个不同点,且m
2+n
2=1,m+n≠0,直线l是线段MN的垂直平分线.设椭圆E的方程为
.
(Ⅰ)当M、N在抛物线C上移动时,求直线L斜率k的取值范围;
(Ⅱ)已知直线L与抛物线C交于A、B、两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,OP中点为S,若
,求椭圆E离心率的范围.
考点分析:
相关试题推荐
设数列{a
n}的前n项和为S
n,已知S
n=2a
n-3n(n∈N
*).
(1)求数列{a
n}的通项公式a
n;
(2)问数列{a
n}中是否存在某三项,它们可以构成一个等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥面ABCD.AD=1,
,BC=4.
(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成角;
(3)设点E在棱PC、上,
,若DE∥面PAB,求λ的值.
查看答案
某商场“五.一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号.顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会.
(Ⅰ)求该顾客摸三次球被停止的概率;
(Ⅱ)设ξ(元)为该顾客摸球停止时所得的奖金数,求ξ的分布列及数学期望Eξ.
查看答案
已知向量
=(sina,cosa),
=(6sina+cosa,7sina-2cosa),设函数f(a)=
•
.
(1)求函数f(a)的最大值;
(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3
,求a的值.
查看答案
某汽车厂有一条价值为a万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y万元与技术改造投入x万元之间满足:①y与(a-x)•x
2成正比;②当
时,y=a
3,并且技术改造投入满足
,其中t为常数且t∈(1,2].则函数y=f(x)表达式为
,定义域
.
查看答案