满分5 > 高中数学试题 >

已知函数f(x)=(x3-6x2+3x+t)ex,t∈R. (1)若函数y=f(...

已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.
(1)若函数y=f(x)依次在x=a,x=b,x=c(a<b<c)处取到极值.
①求t的取值范围;
②若a+c=2b2,求t的值.
(2)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立.求正整数m的最大值.
(1)①根据极值点是导函数的根,据方程的根是相应函数的零点,结合函数的单调性写出满足的不等式解出t的范围,②将三个极值点代入导函数得到方程,左右两边各项的对应系数相等,列出方程组,解出t值. (2)先将存在实数t∈[0,2],使不等式f(x)≤x恒成立转化为将t看成自变量,f(x)的最小值)≤x;再构造函数,通过导数求函数的单调性,求函数的最值,求出m的范围. 【解析】 (1)①f'(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex ∵f(x)有3个极值点, ∴x3-3x2-9x+t+3=0有3个根a,b,c. 令g(x)=x3-3x2-9x+t+3,g'(x)=3x2-6x-9=3(x+1)(x-3), g(x)在(-∞,-1),(3,+∞)上递增,(-1,3)上递减. ∵g(x)有3个零点∴∴-8<t<24. ②∵a,b,c是f(x)的三个极值点, ∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+bc+ac)x-abc ∴ ∴b=1或-(舍∵b∈(-1,3)) ∴∴t=8 (2)不等式f(x)≤x,即(x3-6x2+3x+t)ex≤x,即t≤xe-x-x3+6x2-3x. 转化为存在实数t∈[0,2],使对任意的x∈[1,m], 不等式t≤xe-x-x3+6x2-3x恒成立. 即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立. 即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立. 设φ(x)=e-x-x2+6x-3,则φ'(x)=-e-x-2x+6. 设r(x)=φ'(x)=-e-x-2x+6,则r'(x)=e-x-2,因为1≤x≤m,有r'(x)<0. 故r(x)在区间[1,m]上是减函数. 又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0 故存在x∈(2,3),使得r(x)=φ'(x)=0. 当1≤x<x时,有φ'(x)>0,当x>x时,有φ'(x)<0. 从而y=φ(x)在区间[1,x]上递增,在区间[x,+∞)上递减. 又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0,φ(4)=e-4+5>0,φ(5)=e-5+2>0,φ(6)=e-6-3<0. 所以当1≤x≤5时,恒有φ(x)>0; 当x≥6时,恒有φ(x)<0; 故使命题成立的正整数m的最大值为5.
复制答案
考点分析:
相关试题推荐
如图,已知M(m,m2)、N(n,n2)是抛物线C:y=x2上两个不同点,且m2+n2=1,m+n≠0,直线l是线段MN的垂直平分线.设椭圆E的方程为manfen5.com 满分网
(Ⅰ)当M、N在抛物线C上移动时,求直线L斜率k的取值范围;
(Ⅱ)已知直线L与抛物线C交于A、B、两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,OP中点为S,若manfen5.com 满分网,求椭圆E离心率的范围.
查看答案
设数列{an}的前n项和为Sn,已知Sn=2an-3n(n∈N*).
(1)求数列{an}的通项公式an
(2)问数列{an}中是否存在某三项,它们可以构成一个等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥面ABCD.AD=1,manfen5.com 满分网,BC=4.
(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成角;
(3)设点E在棱PC、上,manfen5.com 满分网,若DE∥面PAB,求λ的值.

manfen5.com 满分网 查看答案
某商场“五.一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号.顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会.
(Ⅰ)求该顾客摸三次球被停止的概率;
(Ⅱ)设ξ(元)为该顾客摸球停止时所得的奖金数,求ξ的分布列及数学期望Eξ.
查看答案
已知向量manfen5.com 满分网=(sina,cosa),manfen5.com 满分网=(6sina+cosa,7sina-2cosa),设函数f(a)=manfen5.com 满分网manfen5.com 满分网
(1)求函数f(a)的最大值;
(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3manfen5.com 满分网,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.