满分5 > 高中数学试题 >

若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+b...

若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
要判断“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”什么条件,我们要先假设“a>0且b2-4ac<0”成立,然后判断“对任意x∈R,有ax2+bx+c>0”是否成立,然后再假设“对任意x∈R,有ax2+bx+c>0”成立,再判断“a>0且b2-4ac<0”是否成立,然后根据结论,结合充要充要条件的定义,即可得到结论. 【解析】 若a>0且b2-4ac<0,则对任意x∈R,有ax2+bx+c>0, 反之,则不一定成立.如a=0,b=0且c>0时,也有对任意x∈R,有ax2+bx+c>0. 故“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的充分不必要条件 故选A
复制答案
考点分析:
相关试题推荐
设a、b、c表示三条直线,α、β表示两个平面,则下列命题中不正确的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是( )
A.ab>ac
B.c(b-a)>0
C.cb2<ab2
D.ac(a-c)<0
查看答案
已知AB是椭圆manfen5.com 满分网的长轴,若把该长轴n等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点P1,P2,…,Pn-1,设左焦点为F1,则manfen5.com 满分网=    查看答案
在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函y=f(x)的图象恰好经过k 个格点,则称函数y=f(x)为k阶格点函数.已知函数:①y=2sinx;②y=cos(x+manfen5.com 满分网);③y=ex-1;④y=x2.其中为一阶格点函数的序号为    (注:把你认为正确论断的序号都填上) 查看答案
设定义在R的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1.则manfen5.com 满分网=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.