满分5 > 高中数学试题 >

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)...

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数manfen5.com 满分网manfen5.com 满分网
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.
(1)当a=1时,易知f(x)在(-∞,0)上递减,有f(x)>f(0)=3,再有给出的定义判断; (2)由函数f(x)在[0,+∞)上是以3为上界的有界函数,结合定义则有|f(x)|≤3在[0,+∞)上恒成立,再转化为在[0,+∞)上恒成立即可; (3)据题意先研究函数g(x)在[0,1]上的单调性,确定函数g(x)的范围,即分别求的最大值和最小值,根据上界的定义,T(m)不小于最大值,从而解决. 【解析】 (1)当a=1时, 因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3, 即f(x)在(-∞,1)的值域为(3,+∞)故不存在常数M>0,使|f(x)|≤M成立 所以函数f(x)在(-∞,1)上不是有界函数.(4分) (2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.(5分) -3≤f(x)≤3, ∴在[0,+∞)上恒成立(6) ∴(7分) 设2x=t,,,由x∈[0,+∞)得t≥1, 设1≤t1<t2, 所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,(9分) h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1 所以实数a的取值范围为[-5,1].(10分) (3), ∵m>0,x∈[0,1] ∴g(x)在[0,1]上递减,(12分) ∴g(1)≤g(x)≤g(0)即(13分) ①当,即时,,(12分) 此时,(14分) ②当,即时,, 此时, 综上所述,当时,T(m)的取值范围是; 当时,T(m)的取值范围是[,+∞)(16分)
复制答案
考点分析:
相关试题推荐
设F1,F2分别是椭圆C:manfen5.com 满分网的左右焦点,
(1)设椭圆C上的点manfen5.com 满分网到F1,F2两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段KF1的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPM,KPN试探究kPM•KPN的值是否与点P及直线L有关,并证明你的结论.
查看答案
manfen5.com 满分网电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间(min)之间的关系如图所示,其中MN∥CD.
(1)若通话时间为2小时,按方案A,B各付话费多少元?
(2)方案B从500min以后,每分钟收费多少元?
(3)通话时间在什么范围内,方案B比方案A优惠?
查看答案
已知等比数列{an}的首项a1=1,公比为x(x>0),其前n项和为Sn
(1)求函数manfen5.com 满分网的解析式;
(2)解不等式manfen5.com 满分网
查看答案
在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是AB上的动点
(1)若直线ED1与EC垂直,请你确定点E的位置,并求出此时异面直线AD1与EC所成的角
(2)在(1)的条件下求二面角D1-EC-D的正切值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(-cosx,sinx),manfen5.com 满分网=(cosx,manfen5.com 满分网cosx),函数f(x)=manfen5.com 满分网manfen5.com 满分网,x∈[0,π]
(I)求函数f(x)的最大值;
(II)当函数f(x)取得最大值时,求向量manfen5.com 满分网manfen5.com 满分网夹角的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.