(1)①依据“平方递推数列”定义,结合条件an+1=2an2+2an,可证数列{2an+1}是“平方递推数列”,
②令bn=2an+1,进而有lgbn+1=2lgbn.从而可证数列{lgbn}为等比数列;
③由②知,数列{lg(2an+1)}是以lg5为首项,2为公比的等比数列,故可求
(2)两边同乘以p整理得,pbn+1+1=(pbn+1)3,两边取对数得:lg(pbn+1+1)=3lg(pbn+1),故数列{lg(pbn+1)}是以lg(p+1)为首项,3为公比的等比数列,从而可求数列{bn}的通项.
【解析】
(1)①由条件an+1=2an2+2an,得2an+1+1=4an2+4an+1=(2an+1)2.
∴数列{2an+1}是“平方递推数列”;
②令bn=2an+1,∴bn+1=2an+1+1.则lgbn+1=2lgbn.
∵lg(2a1+1)=lg5≠0,∴=2.
数列{lg(2an+1)}是等比数列;
③由②知,lg(2an+1)=,∴2an+1=,∴an=
(2)两边同乘以p得,pbn+1=p3bn3+3p2bn2+3pbn(p>0),
∴pbn+1+1=p3bn3+3p2bn2+3pbn+1=(pbn+1)3,
两边取对数得:lg(pbn+1+1)=3lg(pbn+1)
∴数列{lg(pbn+1)}是以lg(p+1)为首项,3为公比的等比数列
∴lg(pbn+1)=3n-1lg(p+1)
∴bn=