满分5 > 高中数学试题 >

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-...

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=manfen5.com 满分网.若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为manfen5.com 满分网,求m的值.
根据函数的形式及函数的极小值,设出g(x),求出g(x)的导函数,根据导函数是函数的斜率,列出方程,求出a的值;写出函数f(x),设出点P的坐标,利用两点距离公式表示出|PQ|2,利用基本不等式求出最小值,通过对m的符号的讨论,求出m的值. 【解析】 依题可设g(x)=a(x+1)2+m-1(a≠0), 则g′(x)=2ax+2a; 又g′(x)的图象与直线y=2x平行    ∴2a=2      解得a=1 ∴g(x)=x2+2x+m, ∵, 设P(x,y),则 当且仅当时,|PQ|2取得最小值,即|PQ|取得最小值 当m>0时,   解得 当m<0时, 解得
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有manfen5.com 满分网为一常数,试求所有满足条件的点B的坐标.
查看答案
某地区共有100户农民从事蔬菜种植,据调查,每户年均收入为3万元.为了调整产业结构,当地政府决定动员部分种植户从事蔬菜加工.据估计,如果能动员x(x>0)户农民从事蔬菜加工,那么剩下从事蔬菜种植的农民每户年均收入有望提高2x%,从事蔬菜加工的农民每户年均收入为manfen5.com 满分网(a>0)万元.
(1)在动员x户农民从事蔬菜加工后,要使从事蔬菜种植的农民的年总收入不低于动员前从事蔬菜种植的年总收入,试求x的取值范围;
(2)在(1)的条件下,要使这100户农民中从事蔬菜加工农民的年总收入始终不高于从事蔬菜种植农民的年总收入,试求实数a的最大值.
查看答案
manfen5.com 满分网如图,平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:BD⊥平面CDE.
查看答案
已知在等边三角形ABC中,点P为线段AB上一点,且manfen5.com 满分网
(1)若等边三角形边长为6,且manfen5.com 满分网,求manfen5.com 满分网
(2)若manfen5.com 满分网,求实数λ的取值范围.
查看答案
已知数列{an}满足:a1=1,a2=x(x∈N*),an+2=|an+1-an|,若前2010项中恰好含有666项为0,则x的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.