若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x
2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的极值;
(II)函数f(x)和g(x)是否存在隔离直线?若存在,求出此隔离直线的方程,若不存在,请说明理由.
考点分析:
相关试题推荐
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求证:DM∥平面PCB;
(3)求平面PAD与平面PBC所成锐二面角的大小.
查看答案
某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为
.
(Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.
查看答案
在△ABC中,
,
.
(1)求cosC;
(2)设
,求
的值.
查看答案
如图,已知EB是半圆O的直径,A是BE延长线上一点,AC切半圆O于点D,BC⊥AC于C,若BC=6,AC=8,则AE=
;AD=
.
查看答案
设函数f(x)=|x-4|+|x-1|,则f(x)的最小值是
,若f(x)≤5,则x的取值范围是
.
查看答案