满分5 > 高中数学试题 >

设,则不等式f(m)+f(m2-2)≥0(m∈R)成立的充要条件是 .(注:填写...

manfen5.com 满分网,则不等式f(m)+f(m2-2)≥0(m∈R)成立的充要条件是    .(注:填写m的取值范围)
根据题意,分析f(x)可得其是奇函数,且是增函数,进而将不等式f(m)+f(m2-2)≥0转化为f(m)≥f(2-m2),由单调性,可得其等价于m≥2-m2,解可得答案. 【解析】 根据题意,f(x)=x3+log2(x+), f(-x)=-x3+log2(-x+)=-x3-log2(x+), 即f(x)是奇函数, 分析单调性容易得到f(x)是增函数, 则不等式f(m)+f(m2-2)≥0⇔f(m)≥-f(m2-2)=f(2-m2), 由单调性又可得,该不等式等价于m≥2-m2,即m2+m-2≥0, 解可得,m≤-2或m≥1, 即(-∞,-2]∪[1,+∞) 故答案为(-∞,-2]∪[1,+∞).
复制答案
考点分析:
相关试题推荐
已知点P(tanα,cosα)在第三象限,则角α的终边在第    象限. 查看答案
已知直线y=x+2与曲线y=ln(x+a)相切,则a的值为    查看答案
已知条件p:x≤1,条件q:manfen5.com 满分网,则¬p是q的    .条件. 查看答案
某算法的伪代码如图,则输出的结果是   
manfen5.com 满分网 查看答案
函数y=1-sin2manfen5.com 满分网)的最小正周期是    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.