不等式
≥0的解为
.
考点分析:
相关试题推荐
对于数列{x
n},如果存在一个正整数m,使得对任意的n(n∈N
*)都有x
n+m=x
n成立,那么就把这样一类数列{x
n}称作周期为m的周期数列,m的最小值称作数列{x
n}的最小正周期,以下简称周期.例如当x
n=2时,{x
n}是周期为1的周期数列,当
时,{y
n}的周期为4的周期数列.
(1)设数列{a
n}满足a
n+2=λ•a
n+1-a
n(n∈N
*),a
1+a,a
2=b(a,b不同时为0),且数列{a
n}是周期为3的周期数列,求常数λ的值;
(2)设数列{a
n}的前n项和为S
n,且4S
n=(a
n+1)
2.
①若a
n>0,试判断数列{a
n}是否为周期数列,并说明理由;
②若a
na
n+1<0,试判断数列{a
n}是否为周期数列,并说明理由.
(3)设数列{a
n}满足a
n+2=-a
n+1-a
n(n∈N
*),a
1=1,a
2=2,b
n=a
n+1,数列{b
n}的前n项和S
n,试问是否存在p、q,使对任意的n∈N
*都有
成立,若存在,求出p、q的取值范围;不存在,说明理由.
查看答案
已知动直线y=kx交圆(x-2)
2+y
2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足
,动点M的轨迹C的方程为F(x,y)=0.
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)
查看答案
某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为m的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足
,当药剂在水中释放的浓度不低于4(毫克/升)时称为有效净化;当药剂在水口释放的浓度不低于4(毫克/升)且不高于10(毫克/升)时称为最佳净化.
(1)如果投放的药剂质量为m=4,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为m,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定该投放的药剂质量m的值.
查看答案
已知函数
.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若f(x)≥log
2t恒成立,求t的取值范围.
查看答案