满分5 > 高中数学试题 >

若z1=1+i,z2=a-i,其中i为虚数单位,且,则实数a= .

若z1=1+i,z2=a-i,其中i为虚数单位,且manfen5.com 满分网,则实数a=   
计算 =a-1+(a+1)i,根据它为实数可得a+1=0,从而得到实数a的值. 【解析】 ∵=(1+i)(a+i)=a-1+(a+1)i 为实数, ∴a+1=0,∴a=-1. 故答案为-1.
复制答案
考点分析:
相关试题推荐
设f(x)的反函数为f-1(x),若函数f(x)的图象过点(1,2),且f-1(2x+1)=1,则x=    查看答案
不等式manfen5.com 满分网≥0的解为    查看答案
若集合manfen5.com 满分网,则∁RA=    查看答案
对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当manfen5.com 满分网时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有manfen5.com 满分网成立,若存在,求出p、q的取值范围;不存在,说明理由.
查看答案
已知动直线y=kx交圆(x-2)2+y2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足manfen5.com 满分网,动点M的轨迹C的方程为F(x,y)=0.
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.