满分5 > 高中数学试题 >

袋中有8个颜色不同,其它都相同的球,其中1个为黑球,3个为白球,4个为红球. (...

袋中有8个颜色不同,其它都相同的球,其中1个为黑球,3个为白球,4个为红球.
(1)若从袋中一次摸出2个球,求所摸出的2个球恰为异色球的概率;
(2)若从袋中一次摸出3个球,且所摸得的3球中,黑球与白球的个数都没有超过红球的个数,记此时得到红球的个数为ξ,求随机变量ξ的概率分布律,并求ξ的数学期望Eξ和方差Dξ.
(1)摸出的2个球为异色球的不同摸法种数为C71+C31C41=19种,从8个球中摸出2个球的不同摸法种数为C82=28,由此能得到所求概率. (2)符合条件的摸法包括以下三种:一种是所摸得的3球中有1个红球,1个黑球,1个白球,共有C41C31=12种不同摸法,一种是所摸得的3球中有2个红球,1个其它颜色球,共有C42C41=24种不同摸法,一种是所摸得的3球均为红球,共有C43=4种不同摸法,故符合条件的不同摸法共有40种.由题意随机变量ξ的取值可以为1,2,3.由此求出随机变量ξ的概率分布列和ξ的数学期望Eξ及方差Dξ. 【解析】 (1)摸出的2个球为异色球的不同摸法种数为C71+C31C41=19种,从8个球中摸出2个球的不同摸法种数为C82=28,故所求概率为;    (6分) (2)符合条件的摸法包括以下三种:一种是所摸得的3球中有1个红球,1个黑球,1个白球,共有C41C31=12种不同摸法,一种是所摸得的3球中有2个红球,1个其它颜色球,共有C42C41=24种不同摸法,一种是所摸得的3球均为红球,共有C43=4种不同摸法,故符合条件的不同摸法共有40种. 由题意随机变量ξ的取值可以为1,2,3.得随机变量ξ的概率分布律为:(12分) x 1 2 3 P(ξ=x) ,(13分).(14分)
复制答案
考点分析:
相关试题推荐
如图已知点P在圆柱OO1的底面圆周上,AB为圆O的直径,
(1)求证:BP⊥A1P;
(2)若圆柱的体积为12π,OA=2,∠AOP=120°,求异面直线A1B与AP所成角大小.

manfen5.com 满分网 查看答案
关于函数manfen5.com 满分网和实数m、n的下列结论中正确的是( )
A.若-3≤m<n,则f(m)<f(n)
B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2
D.若f(m)<f(n),则m3<n3
查看答案
设数列{an}的前n项之和为Sn,若manfen5.com 满分网(n∈N*),则{an}( )
A.是等差数列,但不是等比数列
B.是等比数列,但不是等差数列
C.是等差数列,或是等比数列
D.可以既不是等比数列,也不是等差数列
查看答案
已知f(x)=manfen5.com 满分网,当θ∈(manfen5.com 满分网manfen5.com 满分网)时,f(sin2θ)-f(-sin2θ)可化简为( )
A.2sinθ
B.-2cosθ
C.-2sinθ
D.2cosθ
查看答案
若m,n为两条不同的直线,α,β为两个不同的平面,则以下命题正确的是( )
A.若m∥α,n∥α,则m∥n
B.若m∥n,m⊥α,则n⊥α
C.若m∥β,α∥β,则m∥α
D.若α∩β=m,m⊥n,则n⊥α
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.