满分5 > 高中数学试题 >

已知函数f(x)=|2x-1-1|,(x∈R). (1)证明:函数f(x)在区间...

已知函数f(x)=|2x-1-1|,(x∈R).
(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(-∞,1)上的单调性;
(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n的取值范围.
(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性; (2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围. 【解析】 (1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴, ∴,∴f(x1)<f(x2). 所以f(x)在区间(1,+∞)上为增函数.(5分) 函数f(x)在区间(-∞,1)上为减函数.(6分) (2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(-∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分) 易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m-1-1<0,2n-1-1>0,又A,B两点的坐标满足方程t=|2x-1-1|,故得t=1-2m-1,t=2n-1-1,即m=log2(2-2t),n=log2(2+2t),(12分) 故m+n=log2(2-2t)+log2(2+2t)=log2(4-4t2), 当0<t<1时,0<4-4t2<4,-∞<log2(4-4t2)<2. 因此,m+n的取值范围为(-∞,2).(17分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为An,且对任意正整数n,都满足:tan-1=An,其中t>1为实数.
(1)求数列{an}的通项公式;
(2)若bn为杨辉三角第n行中所有数的和,即bn=Cn+Cn1+…+Cnn,Bn为杨辉三角前n行中所有数的和,亦即为数列{bn}的前n项和,求manfen5.com 满分网的值.
查看答案
袋中有8个颜色不同,其它都相同的球,其中1个为黑球,3个为白球,4个为红球.
(1)若从袋中一次摸出2个球,求所摸出的2个球恰为异色球的概率;
(2)若从袋中一次摸出3个球,且所摸得的3球中,黑球与白球的个数都没有超过红球的个数,记此时得到红球的个数为ξ,求随机变量ξ的概率分布律,并求ξ的数学期望Eξ和方差Dξ.
查看答案
如图已知点P在圆柱OO1的底面圆周上,AB为圆O的直径,
(1)求证:BP⊥A1P;
(2)若圆柱的体积为12π,OA=2,∠AOP=120°,求异面直线A1B与AP所成角大小.

manfen5.com 满分网 查看答案
关于函数manfen5.com 满分网和实数m、n的下列结论中正确的是( )
A.若-3≤m<n,则f(m)<f(n)
B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2
D.若f(m)<f(n),则m3<n3
查看答案
设数列{an}的前n项之和为Sn,若manfen5.com 满分网(n∈N*),则{an}( )
A.是等差数列,但不是等比数列
B.是等比数列,但不是等差数列
C.是等差数列,或是等比数列
D.可以既不是等比数列,也不是等差数列
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.