满分5 > 高中数学试题 >

若cosα=,则tan2α= .

若cosα=manfen5.com 满分网,则tan2α=   
利用同角三角函数基本关系式,先求出sin2α,再利用商式关系求tan2α 即可. 【解析】 ∵cosα=,∴sin2α=1-cos2α=1-=,cos2α=. tan2α===2 故答案为:2.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网,其中manfen5.com 满分网manfen5.com 满分网(x,y,c∈R),把其中x,y所满足的关系式记为y=f(x),若函数f(x)为奇函数.
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 已知数列{an}的各项都是正数,Sn为数列{an}的前n项和,且对于任意n∈N*,都有“{f(an)}的前n项和等于Sn2,”求数列{an}的通项式;
(Ⅲ) 若数列{bn}满足manfen5.com 满分网,求数列{bn}的最小值.
查看答案
已知F1、F2分别是椭圆manfen5.com 满分网的左、右焦点,P是此椭圆上的一动点,并且manfen5.com 满分网的取值范围是manfen5.com 满分网
(Ⅰ)求此椭圆的方程;
(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C在第一象限内),又P、Q是椭圆上两点,并且满足manfen5.com 满分网,求证:向量manfen5.com 满分网共线.
查看答案
已知函数manfen5.com 满分网(常数a∈R+
(Ⅰ)判断f(x)的奇偶性并说明理由;
(Ⅱ)试研究函数f(x)在定义域内的单调性,并利用单调性的定义给出证明.
查看答案
某地区由于战争的影响,据估计,将产生60~100万难民,联合国难民署从4月1日起为该地区难民运送食品.连续运送15天,总共运送21300t;第一天运送1000t,第二天运送1100t,以后每天都比前一天多运送100t,直到达到运送食品的最大量,然后再每天递减100t;求在第几天达到运送食品的最大量.
查看答案
直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2manfen5.com 满分网,E,F分别是BC、AA1的中点.
求:(1)异面直线EF和A1B所成的角.
(2)直三棱柱ABC-A1B1C1的体积.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.