满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R, (1)若f(-1)...

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,manfen5.com 满分网
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?
(1)f(-1)=0⇒a-b+1=0,又值域为[0,+∞)即最小值为0⇒4a-b2=0,求出f(x)的表达式再求F(x)的表达式即可; (2)把g(x)的对称轴求出和区间端点值进行分类讨论即可. (3)f(x)为偶函数⇒对称轴为0⇒b=0,把F(m)+F(n)转化为f(m)-f(n)=a(m2-n2)再利用m>0,n<0,m+n>0,a>0来判断即可. 【解析】 (1)∵f(-1)=0, ∴a-b+1=0①(1分) 又函数f(x)的值域为[0,+∞),所以a≠0 且由知即4a-b2=0② 由①②得a=1,b=2(3分) ∴f(x)=x2+2x+1=(x+1)2. ∴(5分) (2)由(1)有g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=,(7分) 当或时, 即k≥6或k≤-2时,g(x)是具有单调性.(9分) (3)∵f(x)是偶函数 ∴f(x)=ax2+1,∴,(11分) ∵m>0,n<0,设m>n,则n<0.又m+n>0,m>-n>0, ∴|m|>|-n|(13分) ∴F(m)+F(n)=f(m)-f(n)=(am2+1)-an2-1=a(m2-n2)>0, ∴F(m)+F(n)能大于零.(16分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn=50n-n2(n∈N*
(1)求证{an}是等差数列.
(2)设bn=|an|,求数列{bn}的前n项和Tn
(3)求manfen5.com 满分网manfen5.com 满分网)的值.
查看答案
已知某企业的原有产品每年投入x万元,可获得的年利润表示为函数:manfen5.com 满分网(万元).现准备开发一个回报率高,科技含量高的新产品从“十一五”计划(此计划历时5年)的第一年开始,用两年的时间完成.这两年,每年从100万元的生产准备金中拿出80万元投入新产品的开发,从第三年开始这100万元就可全部用于新旧两种产品的生产投入.经预测,新产品每年投入x万元,可获得的年利润表示为函数:manfen5.com 满分网(万元).
(1)为了解决资金缺口,第一年初向银行贷款1000万元,年利率为5.5%(不计复利),第五年底一次性向银行偿还本息共计多少万元?
(2)从新产品投入生产的第三年开始,从100万元的生产准备金中,新旧两种产品各应投入多少万元,才能使后三年的年利润最大?
(3)从新旧产品的五年最高总利润中拿出70%来,能否还清对银行的欠款?
查看答案
直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2manfen5.com 满分网,E,F分别是BC、AA1的中点.
求:(1)异面直线EF和A1B所成的角.
(2)直三棱柱ABC-A1B1C1的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网定义函数f(x)=manfen5.com 满分网
(1)求函数f(x)的最小正周期.
(2)x∈R时求函数f(x)的最大值及此时的x值.
查看答案
设z为虚数,且满足-1≤manfen5.com 满分网≤2,求|z|.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.