函数
的单调递减区间为
.
考点分析:
相关试题推荐
如图,P
1(x
1,y
1)、P
2(x
2,y
2)、…、P
n(x
n,y
n)(0<y
1<y
2<…<y
n)是曲线C:y
2=3x(y≥0)上的n个点,点A
i(a
i,0)(i=1,2,3,…,n)在x轴的正半轴上,且△A
i-1A
iP
i是正三角形(A
是坐标原点).
(1)写出a
1,a
2,a
3;
(2)求出点A
n(a
n,0)(n∈N
*)的横坐标a
n关于n的表达式;
(3)设
,若对任意的正整数n,当m∈[-1,1]时,不等式
恒成立,求实数t的取值范围.
查看答案
已知f(x)=lnx,g(x)=
+mx+
(m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)-f(2a)<
.
查看答案
在直角坐标平面内,已知点A(2,0),B(-2,0),P是平面内一动点,直线PA、PB斜率之积为-
.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点(
,0)作直线l与轨迹C交于E、F两点,线段EF的中点为M,求直线MA的斜率k的取值范围.
查看答案