满分5 >
高中数学试题 >
设U=R,A={x|x>0},B={x|x>1},则A∩∁UB=( ) A.{x...
设U=R,A={x|x>0},B={x|x>1},则A∩∁UB=( )
A.{x|0≤x<1}
B.{x|0<x≤1}
C.{x|x<0}
D.{x|x>1}
考点分析:
相关试题推荐
已知f(x)=ax-ln(-x),x∈(-e,0),
,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,
.
(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
查看答案
如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-
,C
,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使
对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.
查看答案
数列
是一个首项为4,公比为2的等比数,S
n是{a
n}的前n项和.
(1)求数列{a
n}的通项及S
n(2)设点列
试求出一个半径最小的圆,使点列Q
n中任何一个点都不在该圆外部.
查看答案
如图,在四棱锥P-ABCD中,底面是矩形,且
,AB=AP,PA⊥底面ABCD,E为AD的中点,F为PC的中点.
(1)求证:EF为AD及PC的公垂线(2)求直线BD与平面BEF所成的角.
查看答案
箱子中装有大小相同的2个红球、8个黑球,每次从中摸取1个球.每个球被取到可能性相同.
(1)若每次取球后不放回,求取出3个球中至少有1个红球的概率.
(2)若每次取出后再放回,求第一次取出红球时,已取球次数的分布及数学期望.(要求写出期望过程)
查看答案