法1:令f=x+y,则f2=(x+y)2≤2(x2+y2)=2,所以f≤.由xy==,知≤.由此能求出的最大值.
法2:令x=cosa,y=sina,则 xy=cosa•sina=[(cos())2-(sin())2]•2sin()cos()=sin()•[cos()-sin()]•(1+cosa+sina),而x+y-1=sina+cosa-1=2sin()cos()-2(sin())2=2sin()•[cos()-sin()],由此能求出的最大值.
解法1:令f=x+y,
则f2=(x+y)2≤2(x2+y2)=2,
所以f≤.
另一方面xy==,
所以≤.
当x=y=时,取到最大值.
解法2:令x=cosa,y=sina,
则 xy=cosa•sina=[(cos())2-(sin())2]•2sin()cos()
=2sin()•[cos()-sin()]•[cos()+sin()]•cos()
=sin()•[cos()-sin()]•(1+cosa+sina),
而x+y-1=sina+cosa-1
=2sin()cos()-2(sin())2
=2sin()•[cos()-sin()],
所以=(1+cosa+sina)
=(1+sin(a+))
≤(1+),
所以当x=y=时,的最大值为.