(1)要证线线垂直,关键是证明线面垂直,利用面面垂直可得线面垂直,故可证;
(2)由于面A1DB⊥面DC1B,△ABC是等腰三角形,D为底边AC上中点,可知∠A1DC1是二面角A1-OB-C1的平面角为Rt∠,再将平面A1ACC1放在平面坐标系中,可求.
证明:(1)在斜三棱柱ABC-A1B1C1中,因为A1在底面ABC上射影落在AC上,则平面A1ACC1经过底面ABC的垂线
故侧面A1C⊥面ABC.
又 BD为等腰△ABC底边AC上中线,则BD⊥AC,从而BD⊥面AC.
∴BD⊥面A1C
又AA1⊂面A1C,∴AA1⊥BD
(2)【解析】
在底面ABC,△ABC是等腰三角形,D为底边AC上中点,故DB⊥AC,又面ABC⊥面A1C
∴DB⊥面A1C,则DB⊥DA1,DB⊥DC1,则∠A1DC1是二面角A1-OB-C1的平面角
∵面A1DB⊥面DC1B,则∠A1DC1=Rt∠,将平面A1ACC1放在平面坐标系中(如图),
∵侧棱AA1和底面成60°,
设A1A=a,则A1=(,a),C1(+2,a) A(0,0),C(2,0),AC中点D(,0),
由知:(-,a)•(+,a)=0,∴a2=3,a=
故所求侧棱AA1长为