满分5 > 高中数学试题 >

已知:tanα=2,则的值是 .

已知:tanα=2,则manfen5.com 满分网的值是   
利用两角和与差的正切函数公式及特殊角的三角函数值化简tan(),把tanα的值代入求出tan()的值,然后把所求的式子中的角提取2后,利用二倍角的正切函数公式化简,将求出的tan()的值代入即可求出值. 【解析】 ∵tanα=2, ∴tan()==-3, 则=tan2()===. 故答案为:
复制答案
考点分析:
相关试题推荐
计算:manfen5.com 满分网=    查看答案
已知Sn是数列{an }的前n项和,Sn满足关系式manfen5.com 满分网manfen5.com 满分网
(n≥2,n为正整数).
(1)令bn=2nan,求证数列{bn }是等差数列,并求数列{an}的通项公式;
(2)对于数列{un},若存在常数M>0,对任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,称数列{un} 为“差绝对和有界数列”,
证明:数列{an}为“差绝对和有界数列”;
(3)根据(2)“差绝对和有界数列”的定义,当数列{cn}为“差绝对和有界数列”时,
证明:数列{cn•an}也是“差绝对和有界数列”.
查看答案
设m为实数,函数f(x)=2x2+(x-m)|x-m|,manfen5.com 满分网
(1)若f(1)≥4,求m的取值范围;(2)当m>0时,求证h(x)在[m,+∞]上是单调递增函数;
(3)若h(x)对于一切x∈[1,2],不等式h(x)≥1恒成立,求实数m的取值范围.
查看答案
某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动.
(1)求从数学兴趣小组、英语兴趣小组各抽取的人数;
(2)求从数学兴趣小组抽取的学生中恰有1名女学生的概率;
(3)记ξ表示抽取的3名学生中男学生数,求ξ的分布列及数学期望.
查看答案
如图,在直四棱柱ABCD-A'B'C'D'中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分别是棱A1B1、AB、A1D1的中点.
(1)证明:直线GE⊥平面FCC1
(2)求二面角B-FC1-C的大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.