满分5 > 高中数学试题 >

已知M={y|y=x2},N={y|x2+y2=2},则M∩N= .

已知M={y|y=x2},N={y|x2+y2=2},则M∩N=   
集合M为二次函数的值域,集合N可看作以原点为圆心,以为半径的圆上点的纵坐标的取值范围,分别求出,再求交集即可. 【解析】 M={y|y=x2}={y|y≥0},N={y|x2+y2=2}={y|},故M∩N={y|} 故答案为:
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+manfen5.com 满分网sinθx2-2x+c的图象经过点manfen5.com 满分网,且在区间(-2,1)上单调递减,在[1,+∞)上单调递增.
(1)证明sinθ=1;
(2)求f(x)的解析式;
(3)若对于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤manfen5.com 满分网恒成立,试问:这样的m是否存在,若存在,请求出m的范围;若不存在,说明理由.
查看答案
已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
查看答案
设A,B分别为椭圆manfen5.com 满分网(a>0,b>0)的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(1)求椭圆的方程;
(2)设点P为椭圆上不同于A,B的一个动点,直线PA,PB与椭圆右准线相交于M,N两点,在x轴上是否存在点Q,使得manfen5.com 满分网,若存在,求出点Q的坐标,若不存在,说明理由.
查看答案
如图:D、E分别是正三棱柱ABC-A1B1C1的棱AA1、B1C1的中点,且棱AA1=8,AB=4,
(1)求证:A1E∥平面BDC1
(2)求二面角A1-BC1-B1的大小.

manfen5.com 满分网 查看答案
一个口袋中装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(Ⅰ)试用n表示一次摸奖中奖的概率p;
(Ⅱ)若n=5,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;
(Ⅲ) 记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.