满分5 > 高中数学试题 >

已知直线l过点(0,),且斜率为,抛物线C:y2=2px(p大于0)的顶点关于直...

已知直线l过点(0,manfen5.com 满分网),且斜率为manfen5.com 满分网,抛物线C:y2=2px(p大于0)的顶点关于直线l的对称点在该抛物线的准线上.
(1)求抛物线C的方程;
(2)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若manfen5.com 满分网(O为原点,A、B异于原点),试求点N的轨迹方程.
(1)先求得直线l的方程,进而可得到原点垂直于l的直线方程,然后联立两方程求得其交点坐标,即可得到P的值,从而可确定抛物线的方程. (2)先假设A,B,N的坐标,根据可得到关于A,B坐标之间的关系,再由A,B两点均在抛物线上得到y22=4x1,y22=4x2即可得到y1y2的值,再表示出直线ON,结合y22=4x1,y22=4x2和y1y2=-8可得到点N的轨迹. 【解析】 (1)由题意可得直线l:① 过原点垂直于l的直线方程为y=-2x② 解①②得.∵抛物线的顶点关于直线l的对称点在该抛物线的准线上. ∴,P=2∴抛物线C的方程为y2=4x. (2)设A(x1,y1),B(x2,y2),N(x,y),由,得x1x2+y1y2+4=0. 又y12=4x1,y22=4x2.解得y1y2=-8③ 直线ON:,即④由③、④及y=y1得, 点N的轨迹方程为x=-2(y≠0).
复制答案
考点分析:
相关试题推荐
某次演唱比赛,需要加试综合素质测试,每位参赛选手需回答三个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有6道艺术类题目,2道文学类题目,2道体育类题目.测试时,每位选手从给定的10道题中不放回地随机抽取三次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.
(I)求某选手在三次抽取中,只有第一次抽到的是艺术类题目的概率;
(II)求某选手抽到体育类题目数ξ的分布列和数学期望Eξ.
查看答案
某校高二年级开设《几何证明选讲》及《坐标系与参数方程》两个模块的选修科目.每名学生可以选择参加一门选修,参加两门选修或不参加选修.已知有60%的学生参加过《几何证明选讲》的选修,有75%的学生参加过《坐标系与参数方程》的选修,假设每个人对选修科目的选择是相互独立的,且各人的选择相互之间没有影响.
(Ⅰ)任选一名学生,求该生参加过模块选修的概率;
(Ⅱ)任选3名学生,记ξ为3人中参加过模块选修的人数,求ξ的分布列和期望.
查看答案
某工厂在试验阶段大量生产一种零件.这种零件有A、B两项技术指标需要检测,设各项技术指标达标与否互不影响.若A项技术指标达标的概率为manfen5.com 满分网,有且仅有一项技术指标达标的概率为manfen5.com 满分网.按质量检验规定:两项技术指标都达标的零件为合格品.
(Ⅰ)求一个零件经过检测为合格品的概率;
(Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率;
(Ⅲ)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
查看答案
高三(1)班和高三(2)班各已选出3名学生组成代表队,进行乒乓球对抗赛,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不得参加两盘单打比赛;③先胜两盘的队获胜,比赛结束.已知每盘比赛双方胜出的概率均为manfen5.com 满分网
(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?
(Ⅱ)高三(1)班代表队连胜两盘的概率为多少?
(Ⅲ)设高三(1)班代表队获胜的盘数为ξ,求ξ的分布列和期望.
查看答案
在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现在可供选用的不同添加剂有6种,其中芳香度为1的添加剂1种,芳香度为2的添加剂2种,芳香度为3的添加剂3种.根据试验设计原理,通常要随机选取两种不同的添加剂进行搭配试验.
(Ⅰ)求所选用的两种不同的添加剂的芳香度之和为3的概率;
(Ⅱ)求所选用的两种不同的添加剂的芳香度之和为偶数的概率;
(Ⅲ)用ξ表示所选用的两种不同的添加剂的芳香度之和,写出ξ的分布列,并求ξ的数学期望Eξ.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.