满分5 > 高中数学试题 >

已知函数(x∈R),其中a∈R. (I)当a=1时,求曲线y=f(x)在点(2,...

已知函数manfen5.com 满分网(x∈R),其中a∈R.
(I)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当a≠0时,求函数f(x)的单调区间与极值.
(I)把a=1代入,先对函数求导,然后求f(2),根据导数的几何意义可知,该点切线的斜率k=f′(2),从而求出切线方程. (II)先对函数求导,分别解f′(x)>0,f′(x)<0,解得函数的单调区间,根据函数的单调性求函数的极值. 【解析】 (I)【解析】 当a=1时,. 又. 所以,曲线y=f(x)在点(2,f(2))处的切线方程为,即6x+25y-32=0. (II)【解析】 =. 由于a≠0,以下分两种情况讨论. (1)当a>0时,令f'(x)=0,得到.当x变化时,f'(x),f(x)的变化情况如下表: 所以f(x)在区间,(a,+∞)内为减函数,在区间内为增函数. 函数f(x)在处取得极小值,且. 函数f(x)在x2=a处取得极大值f(a),且f(a)=1. (2)当a<0时,令f'(x)=0,得到.当x变化时,f'(x),f(x)的变化情况如下表: 所以f(x)在区间(-∞,a)内为增函数,在区间内为减函数. 函数f(x)在x1=a处取得极大值f(a),且f(a)=1. 函数f(x)在处取得极小值,且.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax2+bx+c(a>0,bc≠0),manfen5.com 满分网
(Ⅰ)若函数f(x)的最小值是f(-1)=0,且f(0)=1,求F(2)+F(-2)的值;
(Ⅱ)在(Ⅰ)的条件下,f(x)>x+k在区间[-3,-1]恒成立,试求k的取值范围;
(Ⅲ)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为m,且 0<m≤2,试确定c-b的符号.
查看答案
已知圆C过点A(0,a)(a>0),且在x轴上截得的弦MN的长为2a.
(1)求圆C的圆心的轨迹方程;
(2)若∠MAN=45°,求圆C的方程.
查看答案
设数列{an}的前n项和为Sn,点manfen5.com 满分网的图象上.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网对所有n∈N*都成立的最小正整数m.
查看答案
直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.
(Ⅰ)求证:AC⊥B1C;
(Ⅱ)求证:AC1∥平面B1CD.

manfen5.com 满分网 查看答案
在△ABC中,tanA=manfen5.com 满分网,tanB=manfen5.com 满分网
(I)求角C的大小;
(II)若AB边的长为manfen5.com 满分网,求BC边的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.